St George Girls' High School

Trial Higher School Certificate Examination

17 minutes a question.

2003

Mathematics Extension 1

Total Marks - 84

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Attempt ALL questions.
- Begin each question on a new page
- Write your student number on each page
- All necessary working must be shown.
- Diagrams are not to scale.
- Board-approved calculators may be used.
- The mark allocated for each question is listed at the side of the question.

Question	Mark
Q1	/12
Q2	/12
Q3	/12
Q4	/12
Q5	/12
Q6	/12
Q7	/12
Total	/84

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Question 1 – (12 marks) – Start a new page

Marks

Find the exact value of $\int_{2}^{3} \frac{x^{2}}{x^{3} - 7} dx$

2

Solve for $x: \frac{2}{x-1} \le 1$

3

P(19, -15) is the point which divides the line interval 'AB' externally in the ratio 3:2. c) Find the coordinates of B(x, y) given A(-2, 3).

3

- d) (i) Find $\frac{d}{dx}(\tan^{-1}x + x)$

Hence, evaluate $\int_0^1 \frac{x^2 + 2}{x^2 + 1} dx$

(leave in exact form).

Ouestion 2 – (12 marks) – Start a new page

Marks

a) The equation $x^3 - mx + 2 = 0$ has two of its roots equal.

- ,
- (i) Write down expressions for the sum of the roots and for the product of the roots.
- (ii) Hence, find the value of m.
- b) The polynomial equation $8x^3 36x^2 + 22x + 21 = 0$ has roots which form an arithmetic progression.

Find the roots of the polynomial.

c) The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola with the equation $x^2 = 4ay$.

It is given that the chord PQ has equation $y = \left(\frac{p+q}{2}\right)x - apq$

3

2

- (i) Show that the gradient of the tangent at P is p.
- (ii) Prove that if PQ passes through the focus, then the tangent at P is parallel to the normal at Q.
- d) (i) Write down the equation for the inverse function of $y = 2^x$, write your response with y as the subject.
 - (ii) Write down the domain of the inverse function from part (i).

Question 3 – (12 marks) – Start a new page

Marks

a) Find the term independent of x in the expansion of $\left(x - \frac{2}{x^3}\right)^{12}$

3

b) Find the greatest coefficient in the expansion of $(2+3x)^{14}$

4

c) (i) Show that $\sqrt{12} \sin x + 2 \cos x = 4 \cos \left(x - \frac{\pi}{3}\right)$

5

(ii) Hence, solve the equation $\sqrt{12} \sin x + 2\cos x = -2\sqrt{2}$ for $0 \le x \le 2\pi$ [Give all answers correct to two decimal places]

Ouestion 4 – (12 marks) – Start a new page

Marks

a) The region bounded by the curve $y = \sin x$, the x-axis and the lines $x = \frac{\pi}{12}$ and $x = \frac{\pi}{4}$ is rotated through one complete revolution about the x-axis. Find the volume of the solid so formed.

[Give your answer in terms of π].

b) Use Mathematical induction to show that the expression $7^n + 5$ is divisible by 6 for all positive integers n.

Water is poured into a conical vessel at a constant rate of 24cm^3 per second. The depth of water is h cm at any time t seconds.

What is the rate of increase of the area of the surface 'S' of the water when the depth is 16cm?

[NOT TO SCALE]

Question 5 - (12 marks) - Start a new page

Marks

1

3

2

1

2

1

1

Newton's Law of Cooling states that when an object at temperature T° is placed in an environment at a temperature of R° , then the rate of temperature loss is given by the equation

$$\frac{dT}{dt} = k(T - R)$$

where t is the time in seconds and k is a constant.

(i) Show that $T = R + Ae^{kt}$ is a solution to the equation.

(ii) A packet of peas, initially at 24°C is placed in a snap-freeze refrigerator in which the internal temperature is maintained at -40°C.

After 5 seconds the temperature of the packet is 19°C. How long will it take for the packet's temperature to reduce to 0°C?

b) Consider the function $y = \log_e \left(\frac{2x}{2+x} \right)$

(i) Show that the domain of the function is: x < -2, x > 0

(ii) Find the value of x for which y = 0

(iii) Show that $\frac{dy}{dx} = \frac{2}{x(2+x)}$ and hence show that the function is increasing for all x in the domain.

(iv) Find any possible points of inflexion.

(v) Find $\lim_{x \to \infty} \left[\log_e \left(\frac{2x}{2+x} \right) \right]$

(vi) Sketch the graph of the function.

Question 6 – (12 marks) – Start a new page

Marks

a) By noting that $(1+x)^n = \sum_{r=0}^n {^nC_r} x^r$,

prove that

$$(i) \quad \sum_{r=0}^{n} {}^{n}C_{r} = 2^{n}$$

.

(ii)
$$\sum_{r=1}^{n} r. {}^{n}C_{r} = n.2^{n-1}$$

b) Evaluate $\int_{1}^{3} \frac{dx}{(1+x)\sqrt{x}}$ using the substitution $u = \sqrt{x}$, give the EXACT value.

4

- c) A particle moving in Simple Harmonic Motion starts from rest at a distance 10 metres to the right of its centre of oscillation O. The period of the motion is 2 seconds.
 - (i) Find the speed of the particle when it is 4 metres from its starting point.

5

(ii) Find the time taken by the particle to first reach the point 4 metres from its starting point, in seconds correct to two decimal points.

$$2T = -10\cos(nt + \alpha)$$

$$2 = -10\cos(tt + \alpha)$$

$$2 = -10\cos(tt + \alpha)$$

$$2 = -10\cos(tt + \alpha)$$

Question $7 \rightarrow (12 \text{ marks}) - \text{Start a new page}$

Marks

a) O and Q are two points 2h metres apart on horizontal ground. P is a point h metres directly above O.

6

A particle is projected from P towards Q with speed V_P ms^{-1} at an angle ' α ' above the horizontal. At the same time another particle is projected from Q towards P with speed V_Q ms^{-1} at an angle of ' β ' above the horizontal. The two particles collide 'T' seconds after projection.

(i) For the projectile travelling from P towards Q the equations of motion are $\ddot{x} = 0$ and $\ddot{y} = -g$.

Use calculus to show that at time t seconds, its horizontal distance x_P from O and its vertical height y_P from O are given by $x_P = (V_P \cos \alpha)t$ and $y_P = (V_P \sin \alpha)t - \frac{1}{2}gt^2 + h$

- (ii) For the particle going from Q towards P, write down expressions for the horizontal distance x_Q from Q and its vertical height y_Q from Q at time t seconds.
- (iii) Hence, show that $\frac{V_P}{V_Q} = \frac{2\sin\beta \cos\beta}{2\sin\alpha + \cos\alpha}$

Question 7 (cont'd)

Marks

b) (i) Write down an expression for sin(x-y)

6

- (ii) If $\sin \alpha = c$ and $\sin(60^\circ \alpha) = d$, prove that $c^2 + cd + d^2 = \frac{3}{4}$
- (iii) If $\triangle ABC$ is equilateral and D is any point on the side BC and if a and b are the lengths of the perpendiculars from D to AB and AC respectively, prove

$$AD = \frac{2}{\sqrt{3}}\sqrt{a^2 + ab + b^2}$$

(a)
$$\int_{2}^{3} \frac{x^{2}}{x^{3}-7} dx = \frac{3}{3} \left[\ln(x^{3}-7) \right]_{2}^{3}$$

= $\frac{3}{3} \left(\ln 20 - \ln 1 \right)$
= $\frac{3}{3} \ln 20$

(4)
$$\frac{2}{x-1} \leq 1 \qquad x \neq 1$$

$$2(x-1) \leq (x-1)^{2}$$

$$0 \leq (x-1)^{2} - 2(x-1)$$

$$0 \leq (x-1)(x-3)$$

$$\Rightarrow$$
 $x \leq 1$ or $x \geq 3$

but x \$ 1

(c)
$$A(-2,3)$$
 $B(x,3)$.

Hence
$$(19, -15) = (3x + 4, 3y - 6)$$

 $= x = 5$
 $y = -3$

(d) (i)
$$\frac{d}{dx}(\tan^{-1}x + x) = \frac{1}{1+x^{2}} + 1$$

(ii)
$$\int_{0}^{1} \left(\frac{x^{2}+2}{x^{2}+1}\right) dx = \int_{0}^{1} \left(\frac{x^{2}+1}{x^{2}+1} + \frac{1}{x^{2}+1}\right) dx$$

$$= \int_{0}^{1} \left(1 + \frac{1}{x^{2}+1}\right) dx$$

$$= \left[x + \tan^{2}x\right]^{1}$$

$$= \left(1 + \tan^{2}1\right) - \left(0 + 0\right)$$

$$= 1 + \frac{\pi}{4}$$

QUESTION 2: (12 MARKS)

(ii) from ①,
$$\beta = -2d$$
 out -2

$$d^{2}x(-2d) = -2$$

$$d^{3} = 1$$

$$d = 1$$

$$d = -2$$

ie Roots are
$$1, 1, -2$$

now $\Sigma \mathcal{L}\beta \Rightarrow \tilde{\mathcal{L}} + 2\mathcal{L}\beta = -m$

ie $1 - 4 = -m$

-: $m = 3$

$$\Sigma \mathcal{L} B \Rightarrow \frac{3}{2} (\frac{3}{2} - \mathcal{A}) + (\frac{3}{2} - \mathcal{A}) (\frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \mathcal{A}) = \frac{4}{4}$$

$$\frac{9}{4} - \frac{3\mathcal{A}}{2} + \frac{9}{4} - \mathcal{A}^2 + \frac{9}{4} + \frac{3}{2} \mathcal{A} = \frac{4}{4}$$

ie
$$\frac{27}{4} - d$$
 = $\frac{11}{4}$
 $27 - 4d$ = 11
 $4d$ = 16
 d = 4
 d = $2, -2$

$$d=2$$
 \Rightarrow roots are $-\frac{1}{2}$, $\frac{3}{2}$, $\frac{7}{2}$ \Rightarrow re Roots are $d=-\frac{1}{2}$, $\frac{3}{2}$, $-\frac{1}{2}$, $\frac{3}{2}$, $\frac{7}{2}$

(c) (i)
$$\ddot{x} = 4ay$$
 ______ 3 MARKS.

$$\Rightarrow \dot{y} = \frac{\ddot{x}}{4a}$$

$$dx = \frac{x}{2a}$$

at
$$P(2ap, ap^2)$$
: $dx = \frac{2ap}{2a}$

$$= p$$

(ii) PQ though focus (0, a)
$$\Rightarrow a = 0 - apq$$

$$ie pq = -1$$

normal at Q has gradient - & tangent at Q has gradient q

(d) (i)
$$f: y = 2^x$$

$$f': x = 2^y$$

$$\therefore \log_x x = y$$

$$D: \text{ all real } x$$

$$R: y > 0$$

ie
$$\int_{-\infty}^{\infty} y = \log_2 x$$

D: x>0 R: all real of

OUESTION 3: (12 MARKS)

(a)
$$\left(x - \frac{2}{x^3}\right)^{1/2}$$
 : $T_{k+1} = {}^{1/2}C x^{1/2-k} \left(-\frac{2}{x^3}\right)^k$
 $= {}^{1/2}C x^{1/2-k} \left(-2\right)^k x^{1/2-4k}$
 $= {}^{1/2}C \left(-2\right)^k x^{1/2-4k}$

Independent of
$$x \Rightarrow 12-4k=0$$

 $k=3$

:. Jern is
$$T = \frac{12C}{3}(-2)^3$$

= -1760 ----3 MARKS.

(b)
$$(2+3x)^{14}$$
: $T_{k+1} = {}^{14}C_{k} \cdot 2^{14-k} \cdot (3x)^{k}$

$$\vdots \quad T_{k} = {}^{14}C_{k-1} \cdot 2^{14-(k-1)} \cdot (3x)^{k-1}$$

$$= {}^{14}C_{k-1} \cdot 2^{15-k} \cdot (3x)^{k-1}$$

Then co-efficients Pk, Pk+1

$$\frac{p_{k+1}}{p_k} = \frac{14C}{k^2} \frac{14-k}{3} \frac{k}{3^{k-1}}$$

$$= \frac{14C}{(14-k)!} \times \frac{15-k}{3} \frac{1(k-1)!}{2} \times \frac{3}{2}$$

$$= (15-k) \times 3$$

$$2k$$

$$= \frac{45-3k}{2k}$$

 $-72. \qquad 45-3k > 1 \qquad 35 > 5k$

 $k < 9 \implies P_{k+1} > P_k$

ie P > P ? > P2 > P1

: Pg is largest co-efficient

and 19 = 14C , 26 , 38

= 1260 971 712 ___ 4 MARKS.

- (c) (i) $4\cos\left(x-\frac{\pi}{3}\right) = 4\left[\cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3}\right]$ $= 4\left[\cos x \cdot \frac{1}{2} + \sin x \cdot \frac{\sqrt{3}}{2}\right]$ $= 2\cos x + \sqrt{12}\sin x$
 - (ii) $\sqrt{12} \sin x + 2\cos x = -2\sqrt{2}$ $\Rightarrow 4\cos \left(x \frac{\pi}{3}\right) = -2\sqrt{2}$ $\cos \left(x \frac{\pi}{3}\right) = -\frac{\sqrt{2}}{2} \qquad 0 \le x \le 2\pi$ $\Rightarrow -\frac{\pi}{3} \le x \frac{\pi}{3} \le \frac{5\pi}{3}$

=3.403..., 4.974...

= 3.40, 4.97 (correct to 2 dec, places)

DUESTION 4: (12 MARKS)

- 4 MARKS

$$V = \pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} dx$$

$$= \pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \sin x \, dx$$

$$= \pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} (1 - \cos 2x) \, dx$$

$$= \frac{\pi}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} (2 - \cos 2x) \, dx$$

$$= \frac{\pi}{2} \left[\frac{\pi}{4} - \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \right]$$

$$= \frac{\pi}{2} \left[\frac{\pi}{4} - \frac{1}{4} \right]$$

$$= \frac{\pi}{2} \left[\frac{\pi}{6} - \frac{1}{4} \right]$$

: Volume is $\frac{\pi}{2}(\frac{\pi}{6} - \frac{1}{4})$ unito

- (b) Proposition: 7" + 5 is divisible by 6 for all integers n ≥ 1
 - (i) Test for n = 1: 7' + 5 = 12:. Inve for n = 1
 - (ii) assume proposition is true for some integer n = k

ie 7 x + 5 = 6 M, Minteger - 0

Then $7^{R+1} + 5 = 7(7^R) + 5$ = 7(6m-5) + 5 from () = 42m - 30= 6(7m-5)= 6N N integer

Then it is also some for n=k+1

But time for n=1 => time for and hence by the Principle of mathematical Induction it is true for all integer n > !

(c)
$$\frac{dV}{dt} = \frac{24 \text{ cm}^3/5}{5}$$

$$V = \frac{1}{3} \pi r^2 h.$$

$$= \frac{1}{3} \pi h^3$$

$$\frac{dV}{dt} = \pi h^2$$

$$\frac{dh}{dt} = \frac{dh}{dV} \cdot \frac{dW}{dt}$$

$$= \frac{1}{\pi R} \cdot 24 \text{ cm/s}$$

when
$$h = 16$$

$$\frac{dk}{dt} = \frac{1}{\pi \cdot 16^2} \cdot 24 \text{ cm/s}$$

$$= \frac{3}{32\pi} \text{ cm/s}$$

$$\frac{dS}{dt} = \frac{dS}{dt} \frac{dl}{dt} \qquad \text{where} \qquad \frac{S = \pi r^2}{\pi L^2}$$

$$= 2\pi L^2 \times \frac{3}{32\pi} \text{ cm}/S \qquad \frac{dS}{dl} = 2\pi L^2$$

$$L=16 \Rightarrow dS = 3 \text{ cm}/5$$

$$\frac{\partial R}{\partial t} = \frac{dS}{dk} \times \frac{dk}{dk} \times \frac{dk}{dk}$$

$$= 2\pi k \times \frac{1}{\pi k^2} \times 24 \text{ cm}^2/5$$

$$L=16 \implies \frac{dS}{dt} = \frac{32\pi \times 1}{256\pi} \times 24 \text{ cm}^2/5$$

$$= 3 \text{ cm}^2/5$$

By similar triangles
$$\frac{+}{L} = \frac{30}{30}$$

_ 4 MARKS

$$\frac{dT}{dt} = k(T-R) - 0$$
(i) $T = R + Ae^{kt} - 2$

$$\Rightarrow \frac{dT}{dt} = kAe^{kt} - 2$$

$$= k(T-R) \text{ from } 2 - 1 \text{ MAR}$$

(i)
$$\frac{dT}{dt} = k (T - -40)$$

$$= k (T + 40)$$

$$\Rightarrow T = -40 + Ae^{kt}$$

$$t = 0$$

$$T = 24$$

$$A = 64$$

$$A = 64$$

$$T = -40 + 64e$$

$$T = -4$$

$$0 \Rightarrow 0 = -40 + 64e^{kt}$$

$$40 = 64e^{kt}$$

$$e^{kt} = \frac{5}{7}$$

$$kt = \ln(\frac{5}{7})$$

$$= 29.889...$$

$$= 29 (40 nearest whole)$$

(b)
$$y = \log\left(\frac{2x}{2+x}\right)$$

(i) hust have
$$\frac{2x}{2+x} > 0$$

$$2x(2+x) > 0$$

: Domain is x < -2 or x>0

(ii)
$$y = 0 \Rightarrow log\left(\frac{2\pi}{2+\pi}\right) = 0$$

$$\frac{2\pi}{2+\pi} = 1$$

$$2\pi = 2+\pi - 1 \quad \text{mark}$$

$$-\pi = 2$$

(iii)
$$y = \log\left(\frac{2\pi}{2+\mu}\right)$$

$$= \log 2\pi - \log(2+\mu)$$

$$= \log 2\pi - \log(2+\mu)$$

$$= \frac{1}{2} - \frac{1}{2+\mu}$$

$$= \frac{2+\mu-\mu}{\mu(2+\mu)}$$

$$= \frac{2}{\mu(2+\mu)}$$

$$(iv) \frac{dx}{dx} = \frac{2}{2x + x^{2}}$$

$$\frac{dx}{dx} = \frac{(2x + x^{2}) \cdot 0 - 2(2 + 2x)}{(2x + x^{2})^{2}}$$

$$= \frac{-4 - 4x}{(2x + x^{2})^{2}}$$

Passible pt of inflexion when y" =0
-4-4x =0
x =-1

But This is outside The domain

(v)
$$\lim_{x\to\infty} \left[\log\left(\frac{2x}{2+x}\right) \right]$$

= $\lim_{x\to\infty} \left[\log\left(\frac{2}{x+1}\right) \right]$
= $\log 2$

QUESTION 6: (12 MARKS)

(a)
$$(/+\pi)^{n} = \sum_{t=0}^{\infty} n_{t} x^{t}$$

(i) sub
$$z = 1$$
 in \bigcirc

$$\Rightarrow 2^n = \sum_{t=0}^n n_{C_t} - 1 \quad MARK$$

(ii) now $(1+x)^n = n_0 + n_0 \times + n_0 \times + \dots + n_k \times +$

let
$$x = 1$$

$$\Rightarrow x^{n-1} = \sum_{t=1}^{\infty} + x_t \qquad -2 \text{ MARK}$$

(b)
$$\int_{1}^{3} \frac{dx}{(1+x)\sqrt{x}} \qquad u = \sqrt{x}$$

$$= x^{\frac{1}{2}}$$

$$= \int_{1}^{\sqrt{3}} \frac{2du}{1+u^{2}} \qquad du = \frac{dx}{2\sqrt{x}}$$

$$= 2\left[\tan^{\frac{1}{2}}u\right]_{1}^{\sqrt{3}}$$

= 2/tan' 13 - tan' 17

 $= 2\left[\frac{\pi}{3} - \frac{\pi}{4}\right]$

(c)
$$T = \frac{2\pi}{n} = 2$$

 $\therefore n = \pi$
 $t = 0$
 $v = 0$
 $v = 0$
 $v = 10$
 $v = 10 \cos \pi t$
 $v = -10\pi \sin \pi t$
 $v = -100\pi \sin \pi t$
 $v = \pi^2 (100 \sin \pi t)$
 $v = \pi^2 (100 - v^2)$
 $v = \pi^2 (100 - v^2)$
 $v = \pm 8\pi$

t=0

$$v=0$$

 $v=0$
 $v=$

$$V^{2} = n^{2}(\alpha^{2} - (3(-x)^{2}))$$

$$V^{2} = TT^{2}(100 - 2^{2})$$

(ii) when
$$t = 6$$

$$= 10 \cos \pi t$$

$$0.6 = \cos \pi t$$

$$Tt = 0.92729...$$

$$t = \frac{0.92729...}{\pi}$$

$$0.30 (correct to 2 dec pt)$$

: Time taken is 0.305

QUESTION 7 :

(i)
$$P: x_p = 0$$
 $\dot{x} = C$
 $\dot{y} = -gt + C$
 $at t = 0, \dot{y} = V_p \sin \alpha$
 $\vdots C = V_p \cos \alpha$
 $\vdots \dot{y} = -gt + V_p \sin \alpha$

-5 MARKS

(ii)
$$x_{\alpha} = (V_{\alpha} \cos \beta) t$$

$$y_{\alpha} = -\frac{1}{2} g t^{2} + (V_{\alpha} \sin \beta) t$$

(iii) at collision,
$$t = T$$
, $x_p + x_a = 2h$ and $y_p = y_a$

now $y_p = y_a$

$$\Rightarrow -\frac{1}{2} y^{2} + (V_a \sin \beta)T = -\frac{1}{2} \sigma T + (V_p \sin \alpha)T + h$$

$$\therefore T = \frac{h}{V_a \sin \beta - V_p \sin \alpha}$$

Then
$$z_p + z_q = \omega 2h$$

$$\Rightarrow (V_p \cos \omega) \cdot \underline{k} + (V_a \cos \beta) \cdot \underline{k} = 2h$$

$$V_a \sin \beta - V_p \sin \omega + V_a \cos \beta = 2V_a \sin \beta - 2V_p \sin \omega$$

$$V_p (\cos \omega + 2\sin \omega) = V_a (2\sin \beta - \cos \beta)$$

$$V_p (\cos \omega + 2\sin \omega) = \frac{2\sin \beta - \cos \beta}{2\sin \omega + \cos \omega}$$

$$W_a = \frac{2\sin \beta - \cos \beta}{2\sin \omega + \cos \omega}$$

(b) (i)
$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

(ii) $c^2 + cd + d^2$
 $= \sin^2 d + \sin d \left(\sin(60-d)\right) + \left[\sin(60-d)\right]^2$
 $= \sin^2 d + \sin d \left[\frac{3}{2}\cos d - \frac{1}{2}\sin d\right] + \left(\frac{13}{2}\cos d - \frac{1}{2}\sin d\right)^2$
 $= \sin^2 d + \frac{1}{2}\sin d \cos d - \frac{1}{2}\sin d + \frac{3}{4}\cos d - \frac{1}{2}\sin d \cos d$
 $+ \frac{1}{4}\sin^2 d$
 $= \frac{3}{4}\sin^2 d + \frac{3}{4}\cos^2 d$

